• Пн
  • Вт
  • Ср
  • Чт
  • Пт
  • Сб
  • Вс

Химики МГУ решили проблему синтеза фотонных кристаллов

15.08.2018 16:56 0

Химики МГУ решили проблему синтеза фотонных кристаллов

Сотрудники факультета наук о материалах и химического факультета МГУ имени М.В. Ломоносова разработали новый способ синтеза фотонных кристаллов — основы будущих фотонных компьютеров, а также солнечных элементов. Исследование опубликовано в журнале Electrochemistry Communications.

Фотонный кристалл — не только красивая игрушка природы, такая как опал, например, или крылья африканской бабочки-парусника. В нем скрыты возможности для создания таких технологий будущего, как фотонный компьютер, суперлинза и суперпризма, фотонные сверхпроводники и многое другое. В зависимости от сочетания энергии падающего на кристалл фотона и свойств кристалла, может либо распространяться в материале, либо отражаться от него. Если задавать структурные характеристики кристалла, то появляется возможность управлять распространением света в нем.

Особенный интерес для материаловедов представляют кристаллы, в которых не только оптическая, но и диэлектрическая проницаемость меняется с периодом, сравнимым с длиной световой волны. Такие материалы позволяют максимально эффективно переводить энергию фотонов в энергию электронов. А это особенно важно для производства фотоэлементов.

Существует множество методов получения фотонных кристаллов: самосборка, травление, голография, фотолитография, анодирование. Последний считается наиболее перспективным с промышленной точки зрения, потому что это сравнительно дешёвый метод получения нанопористых оксидов таких металлов, как алюминий, титан, цирконий, гафний и других.

Процесс проводят в двухэлектродной электрохимической ячейке: в электролит опускают катод и анод (металлические пластины) и подают напряжение. На катоде выделяется водород, на аноде происходит электрохимическое окисление металла до оксида - анодирование. Если проводить анодирование с периодически изменяющимися напряжением и током анодирования, то формируется пористая плёнка оксида с заданной по толщине пористостью и, следовательно, с модуляцией эффективного показателя преломления и диэлектрической проницаемости по толщине плёнки. Таким способом и получается фотонный кристалл.

Оксид титана TiO2 обладает более высоким показателем преломления, чем самый популярный анодный оксид — оксид алюминия, что при заданных оптических свойствах позволяет создавать на основе оксида титана более тонкие материалы. Если рассматривать фотонные кристаллы для солнечных батарей, то оксид титана наиболее подходит в качестве материала из-за своих полупроводниковых свойств.

В теории подобный процесс звучит отлично, но до сих пор отсутствие воспроизводимой и недорогой технологии создания фотонных кристаллов на основе диоксида титана мешало практическому применению таких материалов. Сотрудники химического факультета и факультета наук о материалах (ФНМ) МГУ под руководством кандидата химических наук, научного сотрудника Нины Саполетовой усовершенствовали методику синтеза диоксида титана при помощи анодирования, что позволило точно задавать структуру пористых оксидных плёнок.

В результате изменения напряжения анодирования по синусоидальному закону в диапазоне 40-60 Вольт в зависимости от плотности заряда, ученые получили нанотрубки анодного оксида титана с постоянным внешним диаметром и периодически изменяющимся с толщиной плёнки внутренним диаметром.

«Применяемые ранее методики анодирования не позволяли получать материалы с высокой степенью периодичности структуры, — пояснил один из авторов работы, научный сотрудник химического факультета МГУ Сергей Кушнир. — Мы разработали новую методику, ключевым составляющим которой является in situ [прим. – непосредственно во время синтеза] измерение заряда анодирования, что позволяет с высокой точность контролировать толщину слоёв с различной пористостью в формируемой оксидной плёнке».

Ранее ученые уже показали, что замена обычного диоксида титана на одномерный фотонный кристалл в фотоэлементах увеличит их эффективность в полтора раза. Поэтому у разработки ученых МГУ большой потенциал, считают авторы работы.

Источник

Предыдущая новость

По нам звонит колокол (во второй раз) Венедиктов рассказал об очередях на загородных участках для голосования 14 апреля жители ЗАО примут участие в акции «Разделяй и используй» Сегодня: Украина хочет провести в Донбассе «руксит» Лiга.net: украинских писателей не будут штрафовать за мат и суржик

Последние новости