Химики МГУ решили проблему синтеза фотонных кристаллов

15.08.2018 16:56 0

Химики МГУ решили проблему синтеза фотонных кристаллов

Сотрудники факультета наук о материалах и химического факультета МГУ имени М.В. Ломоносова разработали новый способ синтеза фотонных кристаллов — основы будущих фотонных компьютеров, а также солнечных элементов. Исследование опубликовано в журнале Electrochemistry Communications.

Фотонный кристалл — не только красивая игрушка природы, такая как опал, например, или крылья африканской бабочки-парусника. В нем скрыты возможности для создания таких технологий будущего, как фотонный компьютер, суперлинза и суперпризма, фотонные сверхпроводники и многое другое. В зависимости от сочетания энергии падающего на кристалл фотона и свойств кристалла, может либо распространяться в материале, либо отражаться от него. Если задавать структурные характеристики кристалла, то появляется возможность управлять распространением света в нем.

Особенный интерес для материаловедов представляют кристаллы, в которых не только оптическая, но и диэлектрическая проницаемость меняется с периодом, сравнимым с длиной световой волны. Такие материалы позволяют максимально эффективно переводить энергию фотонов в энергию электронов. А это особенно важно для производства фотоэлементов.

Существует множество методов получения фотонных кристаллов: самосборка, травление, голография, фотолитография, анодирование. Последний считается наиболее перспективным с промышленной точки зрения, потому что это сравнительно дешёвый метод получения нанопористых оксидов таких металлов, как алюминий, титан, цирконий, гафний и других.

Процесс проводят в двухэлектродной электрохимической ячейке: в электролит опускают катод и анод (металлические пластины) и подают напряжение. На катоде выделяется водород, на аноде происходит электрохимическое окисление металла до оксида — анодирование. Если проводить анодирование с периодически изменяющимися напряжением и током анодирования, то формируется пористая плёнка оксида с заданной по толщине пористостью и, следовательно, с модуляцией эффективного показателя преломления и диэлектрической проницаемости по толщине плёнки. Таким способом и получается фотонный кристалл.

Оксид титана TiO2 обладает более высоким показателем преломления, чем самый популярный анодный оксид — оксид алюминия, что при заданных оптических свойствах позволяет создавать на основе оксида титана более тонкие материалы. Если рассматривать фотонные кристаллы для солнечных батарей, то оксид титана наиболее подходит в качестве материала из-за своих полупроводниковых свойств.

В теории подобный процесс звучит отлично, но до сих пор отсутствие воспроизводимой и недорогой технологии создания фотонных кристаллов на основе диоксида титана мешало практическому применению таких материалов. Сотрудники химического факультета и факультета наук о материалах (ФНМ) МГУ под руководством кандидата химических наук, научного сотрудника Нины Саполетовой усовершенствовали методику синтеза диоксида титана при помощи анодирования, что позволило точно задавать структуру пористых оксидных плёнок.

В результате изменения напряжения анодирования по синусоидальному закону в диапазоне 40-60 Вольт в зависимости от плотности заряда, ученые получили нанотрубки анодного оксида титана с постоянным внешним диаметром и периодически изменяющимся с толщиной плёнки внутренним диаметром.

«Применяемые ранее методики анодирования не позволяли получать материалы с высокой степенью периодичности структуры, — пояснил один из авторов работы, научный сотрудник химического факультета МГУ Сергей Кушнир. — Мы разработали новую методику, ключевым составляющим которой является in situ [прим. – непосредственно во время синтеза] измерение заряда анодирования, что позволяет с высокой точность контролировать толщину слоёв с различной пористостью в формируемой оксидной плёнке».

Ранее ученые уже показали, что замена обычного диоксида титана на одномерный фотонный кристалл в фотоэлементах увеличит их эффективность в полтора раза. Поэтому у разработки ученых МГУ большой потенциал, считают авторы работы.

Источник

Предыдущая новость

News.Com.Au: на планы Трампа разместить оружие в космосе Россия отвечает гиперзвуковым беспилотником Собянин открыл движение на первом участке Большой кольцевой линии метро Телеканал «Москва 24» первым в мире начал вещание в прямом эфире в вагонах метро Российская «суперпушка», способная уничтожить любую технику НАТО, восхитила американцев Россия готовится уйти с Донбасса

Последние новости